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EQUATIONS 
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SUMMARY 
In this paper we propose and study various multilevel schemes for solving unsteady equations. Numerical 
comparisons between the choices of discretization and discussions are made on the Burgers equation in one and 
two dimensions. In particular we prove the advantage of using a hierarchical AD1 solver. 
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1. INTRODUCTION 

A number of new proposals have been advanced during the last decade in dynamical systems theory 
about inertial manifolds and approximate inertial manifolds by Foias et u Z . ” ~  and Jolly et uL3 
respectively. The associated numerical methods are called non-linear Galerkin methods (as opposed 
to usual Galerkin methods which project equations on linear manifolds). These methods are based on a 
distinction between some quantities thanks to the notion of small and large scales. In spectral analysis 
these sizes identify themselves with first and last modes of the decomposition. In finite difference 
(Incremental Unknowns) and finite element &erarchical basis) one would rather speak about nodal 
values and corrections on multilevel meshes and associate large scales with coarse grid unknowns. The 
application of these new concepts must allow us to carry out long-time scientific computations 
(especially in fluid mechanics) with several million unknowns, computations henceforth possible 
thanks to new generations of computers. We also show that those new concepts are especially suitable 
for the simulation of turbulent flows. 

Some previous studies have already been made in spectral analysis and stability improvement has 
been observed by Debussche et al? Unfortunately, it seems that small scales do not vanish enough in 
finite difference. Hence we have to define particular algorithms and make a first extensive study of 
multilevel schemes. 

There exist many possibilities for solving unsteady equations numerically. A differentiation between 
the linear part and the non-linear part allows us (for some parabolic equations) to use semi-implicit time 
differencing for the heat operator (a Crank-Nicolson scheme) and second-order explicit Adams- 
Bashforth time differencing for the non-linear (convection) terms. From this point of view, the first 
requirement will be to define efficient schemes, adapted to vectorial computers, for the heat operator. 

In this work we will begin by resolving the one-dimensional case. We will propose for the Burgers 
equation a scheme defining a multilevel resolution, which is assimilated with a direct solver when the 
number of unknowns plus one is a power of two. In the two-dimensional case we will propose several 
schemes, some classical, some defined with Incremental Unknowns and some extensions of the one- 
dimensional case, thanks to AD1 formulations. For each scheme we will study computational aspects 
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and performances on vectorial computers. In fact, we will propose here some new treatments of the 
discretized algebraic equations, allowing us to define, in the near future, non-linear Galerkin methods in 
finite difference. 

The paper is organized as follows. In Section 2 we introduce the Incremental Unknowns concept. In 
Section 3 we deal with the one-dimensional case of the Burgers equation. We also present a discussion 
about variations in Incremental Unknowns and their connection with a spectral analysis of the solutions. 
The two-dimensional case is presented in Section 4. The last section is devoted to concluding remarks. 

2. THE INCREMENTAL UNKNOWNS CONCEPT 

Incremental Unknowns were introduced by Chen and Temam' as a finite difference multilevel method 
to solve linear elliptic problems. Some first theoretical results were given by the authom6 

The prime aspect of Incremental Unknowns schemes is the fact that they give better-conditioned 
algebraic systems in elliptic-like problems. Several numerical studies have been made in that sense: we 
can cite Chehab and Temam7 and Chehab' for solving a bibcation problem, and Poullet' and 0. 
Goy on"." for solving non-linear steady problems. 

The Incremental Unknowns concept is based on a multilevel discretization in finite difference. The 
one-dimensional case is especially propitious: the Incremental Unknowns convert the inversion of the 
linear system on a fine grid (FG) into an inversion on a coarse grid (CG) (as a cyclic reduction). In two 
dimensions this decoupling does not operate but the new schemes generate better-conditioned linear 
systems. 

We denote by U an unknown of the initial system, by Yan unknown of CG and by Z an unknown of 
FG, where Yand Z are called Incremental Unknowns. We can now define formulae for Yand Z. In one 
dimension we obtain 

in two dimensions we obtain 

A study of the algebra of Incremental Unknowns in three dimensions can be found in Reference 10. 
Using these formulae recursively on several grids, we are able to define multilevel schemes in 
Incremental Unknowns. 

Let A be the matrix of the linear system where unhowns are set grid by grid and let S be the transfer 
matrix of (1) or (2). Then the initial system in nodal basis (on one grid) is rewritten as 

STASii = STb, (3) 

where ti is the reordered vector of Incremental Unknowns and b is the reordered vector of the right 
member. 

Unfortunately, we will see later that, as a general rule, S'AS is not well conditioned if A is the matrix 
of the heat operator. Therefore we will be obliged to propose new multilevel formulations. 
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3. RESOLUTIONS OF THE ONE-DIMENSIONAL BURGERS EQUATION 

In a monograph, BurgersI2 described his study (to attempt to define a statistical theory of turbulent fluid 
motion) of the interactions between dissipative and non-linear terms in an extremely simplified non- 
linear difision equation (now called the Burgers equation). Many problems can be modelled by the 
Burgers equation. A detailed study has been made by F1et~her.I~ Independently, the Burgers equation 
can be considered as an approach to the Navier-Stokes equations. 

The Burgers equation is similar to the usual transport equation, except that the convective term is non- 
linear. If the viscous (dissipative) term is dropped, the result is the inviscid Burgers equation. The non- 
linearity allows discontinuous solutions (shocks) to develop. Several formulations of the equation exist. 
In a conservative form the Cauchy problem to solve is 

The numerical treatment of solutions with shocks goes beyond the purpose of our study. 
Nevertheless, we can obtain smooth solutions (in a sense to be defined) approachmg discontinuous 
solutions of (4). These are the solutions of the dissipative Burgers equation 

- v- a2u(x't) v > O ,  O < t < T ,  x E R, au(x, t) 1 a u y x ,  t) +--- 
at 2 ax a x 2  ' 

where u will be called thereinafter the velocity andf is the initial condition. 
The effect of the viscous term in ( 5 )  prevents multivalued solutions but permits severe gradients. 

Hence the dissipative Burgers equation is very suitable for testing computational algorithms for flows. 
Another reason for the success of this equation is the possibility of obtaining explicitly exact solutions 
of ( 5 )  for many initial conditions thanks to the Cole- H ~ p f ' ~ , ' '  transformation. An extensive study of 
these exact solutions has been made by Benton and Platzman.16 

It is also possible to solve exactly the general problem with arbitrary, time- dependent boundary 
values on u: u(x, t )  = 1 - 2Jvtanh[(x - t ) / Jv ]  is one of the known solutions. This last solution has 
been used to verify the accuracy of our schemes (see Figure 1 in Section 3.2). 

3.1. Discretizations of the equation 

We have chosen to solve ( 5 )  on a bounded domain [a, b] and on a uniform mesh in finite difference. 
In this subsection we present several discretizations of the equation and we will justify the choice of 
multilevel schemes. 

Notation. N is the number of interior nodes (without boundaries), h = (b - a) / (N+ 1) is the space 
step and 6t is the time step. We denote by U,? = u(xi , tn)  the solution at node x i = a  + i  x h time 
tn = n x 6t. We denote by Y the linear heat operator of ( 5 )  and by 9? the non-linear operator. We can 
thus reformulate ( 5 )  as 
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Discretization in nodal basis. If we choose to use a Crank-Nicolson time differencing for 9, 
second-order explicit Adams-Bashforth time differencing for L3 and second-order centred schemes for 
all derivatives, the discretization gives 

dt 
8h 

- - (U,?j2 + Uin,r2)( Ui",;2 - U,?;2)), 1 < i Q N, 

Uf; = ul(n x dt), u;+l = u,(n x dt). 

One can easily prove that system (7) is of second order in space and time. Let A be the Laplacian matrix, 
I the identity matrix and NL(. . .) the discretization of the non-linear term. A matrix formulation of (7) 
leads us to 

A two-level discretization. This discretization is the result of substitutions between equations. 
Rewriting system (7) at nodes 2i, 2i - 1 and 2i + 1, we obtain 

with 

System (1 1) consists of a linear system to solve only on a coarse grid (with (N - 1)/2 unknowns when 
system (7) has N unknowns). 
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A multilevel discretization. Defining 

a1 = a ,  BI = b  (12) 

a2 = (all2 - 2(B1I2. 8 2  = ( 8 1 ) 2 1  A = alfii + B1V;i - I  +/2i+l)* (13) 

we can rewrite (1 la) as 

- B2(~;i-2 + u;~+~) =-&. (14) 

Thus we can repeat the substitution procedure from the old grid. If N = 2L - 1, we obtain on k levels (for 
k < L) a linear system to solve on a coarse grid, 

a k u ; k - l i  - ~ k ( u ; k - l , - 2 k - l  + u;k-li+2k-l) =&-2i, (15) 

and solutions are obtained recursively on fine grids for 1 = k - 1, . . . , 1, 

with 

PI = ( 8 1 - 1 ) 2 9  

&-li = a1-l<3i + ~ ~ - ~ ~ f 2 ‘ - ~ ~ - ~ ~ - ~  I -  1 + <L‘~+~~-~).  

2 a1 = ( a d 2  - 2Vl-1) I 

If k= L, there is no linear system like (15) to solve; all unknowns are explicitly obtained. 

Multilevel discretizations using Incremental Unknowns. If we choose to apply Incremental 
Unknowns to system (8), we obtain (with the notation of Section 2) 

We also can apply Incremental Unknowns formulae (1) to (9). It is straightforward to see that the 

(19) 

resulting systems are 

a & l i  - f i ~ ( Y ; k - l i - ~ k - l  + y$-li+2k-l) =f ;k t -Zi ,  

To avoid numerical overflows, we replace relations (1 7) by 
2 

@ I - 1 )  
P I = - *  

@I-1)2 al = aI-l - 2-, 
El-, a1-1 

A study of the sequence yl= Bl/ar exhibits the convergence of a1 to a and of to zero in (21). 
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3.2. Numerical results 

In this subsection we begin by considering an exact analytical solution of the Burgers equation ( 5 )  
with Dirichlet boundary conditions. This solution is useful to verify the accuracy of the schemes and to 
validate the Fortran programs. We present in Figure 1 the time evolution of h s  solution. 

We now consider a sine as an initial condition, with the computational domain [0, 11: 

u(x, t = 0) = sin(2nx). (22) 

This is quite an interesting numerical test thanks to the growth and control (with the viscosity) of a 
severe gradient near x = 0.5 (see Figure 3 in Section 3.3). On the other hand, the spatial periodicity of 
the solution allows us a spectral study of the results (see Section 3.4). The Reynolds number is given by 
Re=  l / v .  This last example has been solved by the numerical schemes proposed in the previous 
subsection. 

To make a comparison of CPU times between the previous schemes, we have chosen to set the final 
time of computation at t = 1.00 (100 time steps). All results are given in Table I. These tests have been 
done on a SUNsparc 10. 

By examining Table 11, one observes that the condition number of 

decreases as the number of grids increases (as a general rule this is not true). Since we solve the linear 
system by a conjugate gradient method, the number of iterations is a function of the condition number of 
the matrix. This result explains the decrease in CPU time when the number of grids increases with (1 8). 
When the scheme (1 9), (20) is used, we reduce the size of the linear system by increasing the number of 
grids. When 1 1 grids are chosen, there is no linear system to solve, so the resolution is very fast (1 -5 s). 

Theoretically we do not know how to choose a valid time step because of the non-linear term. 
Experimentally we observe on curves the appearance of small oscillations of the velocity when we 
increase the time step at a fixed number of nodes. For N= 2049 this leads us to choose bt = 0.01 at 

U(t=O,x)= 1 -2sqrt( nu)tan h(xlsqrt(nu)) 
1025 pts, flu = 0.01 

- sol at t-o.oai 
sol at t10.100 
sol at1=0.500 
sol at bl.OO0 

. .. .. .... 

X 

Figure 1. Time evolution of an exact analyhcal solution 
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Table I. CPU time comparison: 6 t=  0.01, R e =  100, t =  1 .OO 

943 

Scheme . (8) (18) (1 8) (18) (1919 (20) (19), (20) (191, (20) 
Number of grids 1 1 2 11 1 2 11 
Number ofnodes 2049 2049 2049 2049 2049 2049 2049 
CPU time (s) 64 73 50 37 71 18 1.5 

Table 11. Condition number of heat operator in Incremental Unknowns 

Scheme (18) (18) (18) 
Number of grids 1 2 11 

Condition number 824 209 155 
K(W 

Re = 100,St = 0.005 at Re = 200 and St = 0.002 at Re = 500. We clearly see that the time step depends 
on the viscosity. Classically we also consider that the stability condition is of CFL type. 

3.3. A study of Incremental Unknowns 

In this subsection we observe the numerical behaviour of Incremental Unknowns. The study is 
devoted to (i) the time evolution of ~ Z l ~ / ~ U ~ ,  (ii) the time evolution of the solution in Incremental 
Unknowns and (iii) the effect of viscosity. 

Figure 2 shows the time evolution of relative norms of Zl with respect to CJ. The coarse grid has 63* 
nodes. 

The level-by-level evolution is visible thanks to the logarithmic scale. We observe different orders of 
magnitude. We also observe a general growth (by a factor of 100 for Re = 500) of norms from t = 0.1 to 

Re= 10 
127rodwonC.Q. 

-6.0 
0.00 0.10 0.20 

time 
Re= 100 

127 ncdm on C.Q. 

Time history of relatives norms 
IZl/lUl. several Re. 

- Coarse Grid (Y) - 1 st level of 2 
2d level of 2 
3rd level of 2 - 4th level of 2 

_ _ _ _  

Re = 500 
127 noda on C.Q. 

-6.0 
0.00 0.10 0.20 

time 

-6.0 
0.00 0.10 0.20 

time 

Figure 2. Time history of relative norms; 2049 nodes, several Re 
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0.3. This last result can easily be explained from relation (1) and Figure 3: the value of Zmust be larger 
than expected in the region of severe gradients and more generally in the region of non-uniform severe 
gradients. The effect of viscosity reduces the gradients and we finally obtain a smooth solution. We 
obtain our first result: we can observe the existence of localized gradients thanks to variations in 
relatives norms of lZ,l/lUl (i.e. gradients generate comparatively high values of Incremental 
Unknowns). 
To underline this effect, in Figure 4 we compare values of Incremental Unknowns at t = 0-25 for 

several Re. When Re increases, the black band indicates that some Incremental Unknowns are not small 
around x = 0.5. For Re = 500, close to x = 0.5, fine grids are locally of the order of the coarse grid (this 
is not true for Re = 10). 

We are also interested in an analysis of the time evolution of Incremental Unknowns. On this subject 
we plot in Figures 5 and 6 the absolute values of variations in the solution (in Incremental Unknowns) 
between two time steps (t = 0.248 and 0-25) in accordance with the grid level and Re. In Figure 6 we 
divide each spatial variation by the nodal solution. We observe that, at particular nodes, variations are 
not connected to a grid level (see e.g. Re = 500 and x E [0.45, 0.551): we cannot distinguish a hierarchy 
of variations as for Re = 10. Thus we obtain our second result: time variations of Incremental Unknowns 
may not be as small as expected. 

In short, even if global variations in Incremental Unknowns are small, locally they may be significant. 
This result causes problems when we want to neglect or estimate these quantities (in the spirit of non- 
linear Galerkin methods). A solution is to practise a strategy of local mesh refinement; results in this 
direction will be given in the near future. 

3.4. Some spectral aspects 

In this subsection we have two different aims: first, to justify by an a posteriori analysis our 
discretization choices, and equally, to connect the previous study of Incremental Unknowns with a 
spectral analysis. 

R e = l O  
127 nodw UI C.Q. 

8 0.0 - Nodal basis. solutions at t=0.25 
-0.2 

-0.4 
0.0 0.2 0.4 0.6 0.8 1.0 

X 

Re = 500 

T?J - c 
3 

Re = 100 
r 2 l  nobr on C.Q. 

= 0.0 

- -. 3 -0.5 -1 l?Ll .o 

0.0 0.2 0.4 0.6 0.8 1.0 

121 nodw on C.Q. 

I ." 
0.0 0.2 0.40.6 0.8 1.0 

X X 

Figure 3. Solutions at t = 0.25; 2049 nodes. s e v d  Re 
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Re= 10 
127 rodr on C.O. 

I no ." 
10' 

Coarse grid (Y) and fine grids (2) - 1 lo4 
gJ 10- 
- 10- 

0.00 0.20 0.40 
X 

Re = 100 
I C.Q. 127 nac Ir m C.O. 

1 o4 1 lo4 i lo4 
8 10- 8 lo4 

1 o4 10- u 
0.00 0.20 0.40 lo-loO.OO 0.20 0.40 

X X 

Figure 4. Solutions at t =  0.25; 127 nodes on coarse grid, several Re 

Re = 10 

1 o* 
1 o4 1 10- 

g lo+ - 
10"O 

127 nodes on C.G. 
sp"""1 variati0.m on a time step 
o the solwon in 1. U. 

0.3 0.5 
1 0-lZ 

1 o4 
1 o4 1 104 

- g 10- 

1 o-'O 

1 0-l2 

Re 2 100 
127 nodes on C.G. 

0.3 0.5 
X 

1 o4 
1 o4 1 lod 

g lo4 - 
1 0-10 

Re = 500 
127 nodes on C.G 

1 0-12 
0.3 0.5 

X 

Figure 5. Spatial variations during a time step; 2049 nodes, s e v d  Re 
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127 nodes on C.G. 
loo , 1 

1 o* 
g lo4 

lod 
B lod 

S tial variations on a time step 
o K e  solution in I.U. 
(relative variations). 

10-10 1 , , , { 
1 o-’2 

0.3 0.5 

Re 2 100 Re = 500 
127 nodes on C.G. 127 nodes on C.G. 

1 

1 o4 1 o= 
2 lo4 

- 10- - 8 lod 
1 0-l0 1 o-’O 

jj $ B lod 

I 

0.3 0.5 0.3 0.5 
X X 

Figure 6. Relative spatial variations during a time step; 2049 nodes, several Re 

The next figures present results of the energy spectrum for several numbers of nOcl;s and several 
values of Re. We define by E the energy spectrum 

where Ek = ;*(k) + i 2 ( - k )  (Ek is the kth mode of the spectrum). Figure 7 explains why we have 
decided to take at least 1025 nodes at t = 0-25 and Re = 500. By varying the mesh size (by adding new 
grids of Incremental Unknowns), we observe variations in the spectrum size until N =  1025 (500 
modes). The mesh size is a h c t i o n  of Re: the spectrum size increases with Re (see Figure 8) .  

What is the time behaviour of the energy spectrum? We will try to answer this question by solving the 
equation with a random initial condition: 

nl 

I= I 
u(x, t = 0) = C ai sin(2nZx). 

Thus we generate a solution with nl modes (we have chosen nl= 255 and Re = 100); a1 are random 
numbers. We choose to take N= 1025 (a higher N gives the same results). 

In Figure 9 we present the time variation of the energy spectrum. We observe a growth of the 
bandwidth between t = 0.0 and 0.01. Then the dissipative effects of the viscosity reduce it. Thus we 
choose in Figure 10 two mesh sizes and compare solutions at t = 0.01. There are obvious differences 
between the solutions (4097 nodes would have given quasi- identical results as 1025 nodes): the 
spectrum climb before t = 0.01 seems not to be artificial and a fine discretization is essential even if the 
initial condition is well represented by a coarse discretization. We observe here effects of the non-linear 
tern. How do Incremental Unknowns behave towards this type of solution? An answer is given in 
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1 oo 

10"O 

i 
- 8 

10" 

Re = 500 
127 nodes on the C.G. 

1 10 100 1000 
1 oQ 

modes 

Figure 7. Energy spectrum; several numbers of nodes, Re = 500, r = 0.25 

Figure 1 1 : we clearly observe first the non-linear effect (between t = 0.0 and 0.04) and then the viscous 
effect. During the first part of the time evolution we cannot distinguish any herarchy of the unknowns; 
after dissipative (smoothing) effects we find henceforth usual results (see Figure 2). 

In short, conjugated effects of viscous and convective terms in the one- dimensional Burgers equation 
allow solutions to have severe gradients during some time steps and smooth oscillations during other 
time steps. Incremental Unknowns appear to be a new manner to study this type of solution. 

Re-  10 
127 nodw on C.Q. 

5: 10'" - Energy spectrum at 14.25 

10" 

modes 
1 10 100 1000 

Re= 100 Re = 500 
127 nod.. on C.Q. 127 nodw on C.Q. 

8 10" 

loQ 1 10 100 1000 lo* 1 10 100 1000 
modes modes 

Figure 8. Variation in spectrum size; several Re, I = 0.25 
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t 
u1 

TEST FUNCTION nu 3 
Energy spectrum at various time (14.0, t=O.Ol, bO.1) 

loo b 

10"O 

10" 

t -0.00 
t - 0.M 

- 
. . .... .. 

t - 0 .1  - - -  

10 100 1 000 
10" 

1 
k 

Figure 9. Time variation of energy specbum 

Comparison of solution with two grid size 
0 . 2 0 1 .  1 .  8 '  1 '  1 . 1  

0.10 c I 

-0.10 1 " V  v 

-0.20' ' ' ' ' ' ' ' ' . ' 
0.0 0.2 0.4 0.6 0.8 1 .o 

X 

Figure 10. comparison of two mesh sizes 
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TEST FUNCTION nu 3 
Time evolution of relatives norms of Z with respect to U 

' . O  ~ 

-4 .0 '  ' ' ' ' ' I 
0.00 0.02 0.04 0.06 0.08 0.10 

time 

Figurc 1 1. Time history of relative norms for third test function 

4. THE TWO-DIMENSIONAL CASE 

The one-dimensional Burgers equation can be extended to multiple dimensions. The two-dimensional 
Burgers equations are 

where Re is a strictly positive parameter. These equations coincide with the two-dimensional Navier- 
Stokes equations if the pressure and the divergence-fiee equation are neglected. As in the one- 
dimensional case, exact solutions can be constructed by using an extension of the Cole-Hopf 
transformation. In two dimensions, only steady solutions are given by Fletcher" in the literature. 

We have decided to dismtize velocity unknowns (u and v )  on each mesh node, so we obtain 

In this section we carry out a study and comparison of two families of numerical methods. The first 
one assumes a discretization of non-linear terms by a second-order Adams-Bashforth scheme (AB2) 
and of linear terms by a Crank-Nicolson scheme (CN). The second family uses the concept of 
alternating directions (ADO that we will develop later. In both cases we present and discuss the results 
for nodal basis with those of multilevel schemes. We are also interested in Computational efficiency. 
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4.1. A first family of schemes 

We have chosen to solve (24) on a rectangular domain [0, a]  x [0, b] with the following notation: h, 
and hy are the space steps and dt is the time step. We denote by U t j  the solution at node 
( x i = ( i -  1) x h , , f i = ( j -  1) x hy)andtimet,,=n x 6t. 

Discretization in nodal basis. Our choice of discretization (CN + AB2) gives 

+; U;rj +flTl) 
for the first component (u)  of the velocity and a similar linear system for the second component (v )  of 
the velocity. These discretizations are of second order in space and time. Using the same matrix notation 
as in one dimension, we can rewrite the last equations as 

As in the one-dimensional case, the explicit discretization of the non-linear terms implies (numerically 
confirmed) a stability condition on the time step. 

Discretizations using Incremental Unknowns. In this subsection we are interested in applying 
relations (2) to system (26). Unlike in the one- dimensional case, there is no decoupling between the 
coarse grid and the fine grid. Using Incremental Unknowns notation, the classical matrix formulation 
is 

ST ( I + - A  2Re 6t ) S U " = S T  - [ ( , - d l R ) U n - ' + 6 f r - r - 1 - N L l ( u , Y ) ) ] ,  2 2Re 
(27) 

ST(I + $A)Sv" = ST[ (I - $ A )  Vn-l + 6 t r  +:-I - NL,(U, V ) ) ] .  

One can also try to solve a non-symmetric version of (27): 
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Remark In system (28) the explicit discretization of the non-linear terms is hierarchic thanks to the 
matrix .!-I. This allows multilevel estimations of linear and non-linear quantities and hture new 
schemes. 

4.2. A second family of schemes: AD1 schemes 

The alternating direction implicit method was developed originally by Peaceman and Rachford" and 
Douglas" for the resolution of multidimensional problems. The main idea is to split a multidimensional 
operator (in our case the two-dimensional heat operator) into several monodimensional operators which 
are easier to solve numerically. Many applications have been made with AD1 schemes, especially for 
elliptic and hyperbolic problems, e.g. by Douglas and 

Multilevel discretizations. By using our multilevel schemes (detailed in Section 3) on each 
monodimensional problem, we are able to define a solver reducing to a maximum the size of linear 
systems to invert. Let us present a two-grid discretization; it is straightforward with (21) to extend 
formulae on any number of grids. During the first half-time step and for eachj, solve 

(a: - 28,2)~;:; /2  - f ( ~ n + ' / 2  2 i -2 j  + U2i+2j)  ' + I / '  = axF;;;y1 + B,(F;;!;\ + F;;:;,\.), 

with 
6t 6t 

ax = 1 +- Re.h,2' 8 x = m  

and right members of the kind 

with 
6t 6t 

Re.h:' 2Re - h: ay = 1 +- by = - 
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Remark To obtain a second-order-accurate time scheme, we have to choose a = 0.5. 

We can also define multilevel schemes using Incremental Unknowns. During the first half-time step, 
formulae linking Y, Z and U for each j are 

yk+1/2 - ~ k + l / 2  

(33) 
2i, j - 2i. j 9 

k+1/2 - I k+1/2 + uk+I/Z).  *:(; = uzi+l, j 2 (ua, j 2i+2j 

During the second half-time step, these formulae for each i become 

The discretization using Incremental Unknowns is obtained by applying relations (33) and (34) to 
system (29) and (31). 

Let us show the pattern of three grid meshes in Incremental Unknowns: for the first half-step we have 

Boundaries : 

First level of Incremenlal Unknowns : 0 

Second level of Incremental Unknowns (fine grid) : . 0 cause grid : 



MLJLTEEVEL SCHEMES FOR SOLVING UNSTEADY EQUATIONS 953 

and for the second half-step we have 

4.3. Numerical results 

All numerical results are obtained by the use of a steady solution already suggested by Jain and 
Holla?’ The initial conditions are 

u(t = 0, X,Y) = ~ i n ( n ~ )  + COS(X~) in [0,0*5]’, 
(35) 

v ( r  = 0, x, y) = x + y in [o, 0.51~. 

The boundary conditions follow fiom the initial conditions. 
This solution is interesting because of the development of gradients along boundaries (see Figures 12 

and 13). We can control the importance of these gradients thanks to the Re value. Consequently, this 
solution seems to be a good test to compare our schemes. Comparisons are made with Re = 100 and two 
mesh sizes: 5 1 32 nodes and 1025’ nodes. The latter mesh size is comparatively fine and permits higher 
values of Re. As far as the CPU time is concerned, t = 0.01. The numerical stability condition allows us 
time steps 6t=0.0005 and 040025 (the use of our multilevel schemes does not allow stability 
improvement and therefore all schemes have the same time step). We have chosen to solve equations 
with the CRAY YMP/EL of the CRI (Orsay University) and with the CRAY C98 of the IDRIS CNRS 
centre respectively. 

Table I11 presents a comparison of execution times for various schemes. If we are only interested in 
CPU time (otherwise the scheme (28) may be a good choice, thanks to a previous remark), we clearly 
observe in Table I11 that the best choice is the multilevel AD1 scheme. 

Remark In tables, when the system solved is called ADI, it is the classical version on one grid. 

If we denote by K ( M )  the condition number of the matrix of (26) (M= I +  (bt/2Re)A), then by the 
are the extreme eigenvalues of the matrix A) it is easy to verify following equation (where p- and 

that the matrix M is well conditioned for high values of Re: 

IC(M)= (1 + * ) / ( 1 + $ ) .  

In Table IV we notice (thanks to a numerical &termination of condition numbers) that the matrices of 
system (27) are not well conditioned when the number of grids increases, except for low values of Re. 
Noting that ST[Z + (bt/2Re)A]S = STS + (6t/2Re)STAS and the fact that 6t/2Re is generally very 
small (of the order of in our examples), K(S~[Z+ (6t/2Re)A]S) is very close to K ( S ~ S ) .  We observe 
this result in Table V (by comparison with Table Iv, Re = 100). 
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U velocity at t = 1.0. Re = 100 

4 

c 

X 
4 

N 

9 
0 
0 

9 
-0 - 

Figure 12. First component of velocity; r = 1 .O, 5 13’ nodes, Re = 100 

v velocity at t = 1.0.  Re = 100 

9 
0 
0 

3 
-0 * 

Figure 13. Second component of velocity; r = I.0,5132 nodes, Re = 100 



MULTILEVEL SCHEMES FOR SOLVING UNSTEADY EQUATIONS 955 

Table 111. Comparison of CPU times: 5132 and 1025’ nodes. Re= 100 
~ 

5 13’ nodes, 200 time steps 

Type of addressing Nodal Multilevel Multilevel Multilevel Nodal Multilevel 
Number of grids 1 2 I 9 I 9 

System solved (26) (27) (28) (28) AD1 (29H31) 

CPU time (s) 1450 2175 4183 4774 1953 535 

102S2 nodes. 400 time steps 

Number of grids 1 2 1 10 1 10 
Type of addressing Nodal Multilevel Multilevel Multilevel Nodal Multilevel 
system solved (26) (27) (28) (28) AD1 (29-0  1) 

CPU time (s) 1116 1238 2719 3153 1270 493 

To complete our study and explain more carefully the results in Table 111, we also desire to make a 
qualitative analysis of CPU times of each scheme. To do this, we define a relative cost per time step, 

W, = - x (number of iterations of gradient method per time step) 
1 

WO 
x (number of matrixvector products per iteration) 
x (relative cost of a matrixvector product), 

(37) 

where Vo is the cost of resolution of system (26). All results summarized in Table VI. 

Remark. (i) The Bi-CGSTAB gradient method (developed by Van der Vors$’) used to solve the non- 
symmetric system (28) prescribes two matrix-vector products per iteration, while the conjugate 
gradient (CG) method prescribes one matrix-vector product per iteration. (ii) By our choice of number 

Table IV Variations in condition number of mahces of (27): 6t = 0.004, 2573 nodes 

Number of grids 1 2 3 4 5 6 7 8 

38 148 358 774 205 56 21 25 

100 23 12 19 67 291 967 2546 

11 7 19 96 408 1525 4604 7253 

Table V Condition number of fS: 2572 nodes 

Numer of grids 1 2 3 4 5 6 7 8 

.(S’S, 1 22 109 458 1806 5356 8209 9323 
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Table VI. Estimations of CPU time 

Number of grids 
Type of addressing 
system solved 

I 
Nodal 
(26) 

Gradient method 
Number of gradient iterations 
Number of matrix-vector products per iteration 
Relative cost of a matrix-vector product 
Relative cost W, per time step 

CG 
53 

1 
1 
1 

2 2 9 1 
Multilevel Multilevel Multilevel Nodal 

(27) (28) (28) AD1 

CG Bi-CGSTAB BiCGSTAB CG 
32 31 29 41 +34 

1 2 2 1 
3 3 3 1 

1.8 3.5 3.3 1 -4 

of nodes the multilevel AD1 scheme becomes a direct solver at each time step: there is no use of a 
gradient method and then we are not able to estimate the relative cost Y, 

If we compare the estimations in Table VI with CPU times actually obtained (see Table III), we find 
that all results are very close, so we can suppose that all these schemes have a similar computational 
optimization. This aspect will be developed in the next subsection. Nevertheless, when Incremental 
Unknowns are used, estimated times are always too large. There exists a simple explanation: the relative 
cost of matrix-vector products in Incremental Unknowns is overestimated. In fact, this cost is between 
1.3 and 2.8 depending on the number of grids. 
By referring to Table VI, we also notice that system (27) with two grids is better conditioned than 

system (26) (nodal basis). This is also true for system (28), but, in addition, this last choice of 
discretization leads to new results: any number of grids (any level of discretization) improves the 
condition number of the matrix to invert (see the number of gmhent iterations). 

Figures 14 and 15 exhibit relatively high values of Incremental Unknowns near boundaries. This 
result is of course! an extension of our one-dimensional observations. 

U velocity at t = 0 . 1 ,  s o l  i n  1 . 1 .  R e  = 100 

3 
-0 . 

Figure 14. First component in Incremental Unknowns of velocity (first level); r = 0.1, 513’ nodes, Re = 100 



MULTILEVEL SCHEMES FOR SOLVING UNSTEADY EQUATIONS 957 

V veloclty at t = 0 . 1 ,  sol in 1 . 1 .  R e  = 100 

Figure 15. Second componcnt in Incrcmcntal Unknowns of velocity (first level); t= 0.1, 513’ nodes, Re = 100 

4.4. Computational aspects 

This subsection is devoted to the study of vectorial and optimization aspects of o w  schemes, 
especially on CRAY cornputen (the CRAY YMP/EL and the CRAY C98) with the High Pe r fomce  
Monitor (HPM) CRAY tool. 
By referring to Table VII, we notice that the Incremental Unknowns addressing (except for the 

multilevel AD1 scheme) only damages the vectorial performance a little (even with a maximal number 
of grids). The lost of vectorial performance is the result of indirect references and recursive parts in 
programs. 

As is made clear by Table VIII, the multilevel AD1 scheme is the fastest method in scalar mode: lo8 
instructions compared with 1.5 x lo9 instructions (vectorial CPU times are not in this ratio because of 

Table W. Mflops performance of several schemes 

Type of a d k i n g  Nodal Multilevel Multilevel Nodal Multilevel 

Mflops 575 395 349 573 132 

Number of grids 1 2 9 1 9 

system solved (26) (27) (28) AD1 (29H3 1) 

~ ~ ~~ 

Table VIII. Number of instxuctions for several schemes 
~~ ~ 

Number of grids 
Type of addressing 
system solved 

~~ 

1 2 9 1 9 
Nodal Multilevel Multilevel Nodal Multilevel 
(26) (27) (28) AD1 Q9H3 1) 

~ u m k  of  instruction^ ( x lo9) 1.5 0.9 2.6 1.9 0.1 
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Table IX. Average conflicts per reference for several schemes 
~ 

Number of grids 
Type of addressing 
System solved 

1 2 9 1 9 
Nodal Multilevel Multilevel Nodal Multilevel 
(26) (27) (28) AD1 (29)- (3 1) 

Average conflictsfreference 0.09 0.23 0.37 0.10 1.67 

the difference in Mflops performances). We also see that system (27) on two grids presents fewer 
instructions than system (26). 

Table IX exhibits the average conflicts per reference. If we detail reasons for the conflicts, we see that 
the main one comes from memory bank conflicts and is a consequence of multilevel addressing; 
conflicts increase with the number of grids. 

By its nature the multilevel AD1 scheme is designed for parallelization (an equation to solve by row or 
by column of the mesh). At each half-time step we solve several monodimensional problems each 
involving a small number of nodes and with only recursive references (see (29) and (31)). Thus 
operations are not really designed for vectorization. This is an explanation of the poor result for the 
multilevel AD1 scheme in term of conflicts per reference. 

5 .  CONCLUDING REMARKS 

In this work, several multilevel schemes are proposed for solving unsteady equations. The one- 
dimensional case allows us to define schemes restricting to a maximum the size of linear systems to 
solve. In these schemes the Incremental Unknowns concept appears to be a new manner to study 
solutions. In the two-dimensional case we extend our schemes and propose a fast ‘direct’ solver of the 
Burgers equations, thanks to an AD1 formulation. This last algorithm is especially designed for 
parallelization. We also propose a non-symmetric formulation of matrices which define a hierarchy of 
the non-linear terms and well condition the systems to solve. 

In short, we have here defined some multilevel formulations of a new kind, allowing fast (vectorial 
and parallel) numerical resolutions of unsteady equations in one and two dimensions. The hierarchy of 
equations possesses numerous advantages: a simplified study of physical phenomena (boundary layers 
are on fine grids) and experimental setting of new numerical analysis concepts (scale distinction, linear 
and non-linear coupling of equations on various grids). 
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